
24 CROSSTALK The Journal of Defense Software Engineering February 2009

Software deployed in safety-critical sys-
tems must achieve the highest stan-

dards of quality, must exhibit a high level
of determinism, and must rely on minimal
run time services to facilitate proof of the
run time environment’s correctness [1, 2].
Because of the rigorous certification
requirements associated with safety-criti-
cal software, developers of safety-critical
systems generally adopt styles of pro-
gramming that are easier to certify but
may be more difficult to program. For
example, the safety-critical Java standard
(JSR-302) offers stack memory allocation
as an alternative to standard edition Java’s
garbage-collected heap [3, 4]. Although
the algorithms for allocating and deallo-
cating stack memory are very simple, effi-
cient, and deterministic, reliance on stack
memory introduces a different kind of
problem. In particular, dangling pointers
may be introduced if pointers to stack-
allocated objects live longer than the
objects they refer to. Certification of a
safety-critical system needs to prove the
absence of dangling pointers in addition
to proving that each memory allocation
request will be satisfied in a predictable
amount of time.

The Real-Time Specification for Java
(RTSJ) [5] eliminates dangling pointers to
stack-allocated objects by enforcing the
rule that no object allocated in an outer-
nested stack frame may hold a pointer to
any object allocated in an inner-nested
stack frame. Enforcement of this rule is
performed with a run time check every
time an object’s field is overwritten.
According to this rule, a seemingly harm-
less statement like:

anObject.aField = aValue;

will throw an IllegalAssignmentError
exception if aValue resides in a scope that
is more inner-nested than the scope that
holds anObject. Certification of a safety-
critical application must prove that no

assignments abort with this exception.
In the vernacular of computer science,

a static property is a property that can be
determined by analysis of a software pro-
gram without (or before) running the pro-
gram. For safety-critical software, all of
the properties that are critical to its safe
operation should be static properties. By
the time the software is running as part of
a safety-critical system, it is too late for a
run time check to detect that a critical
property has been violated.

There are two common approaches to
verification of static properties. The ap-
proach most familiar to software engineers
is a programming language type system [6,
7]. The second approach, broadly character-
ized as the use of static analysis, augments
the analysis performed by the programming
language type system. Table 1 highlights
some of the differences between the two.

This article describes the implementa-
tion of a type system that enforces prop-
erties that are important to the develop-
ment of safety-critical code using the Java
language. The approaches are somewhat
unique in that our implementation of the
safety-critical Java type system borrows
certain techniques that are more tradition-
ally used in static analyzers. These tech-
niques are not usually used in the imple-
mentation of the safety-critical Java type
system. We make these techniques more
efficient and precise by restricting the data-
flow analysis to one method at a time.
Among the important properties that are
analyzed by the safety-critical type system,
it can enforce that:
1. A method is written in a restrictive

style allowing special development
tools to automatically analyze the CPU
time and the stack memory required to
execute the method.

2. A method is known not to block its
execution awaiting some condition
that is to be satisfied by some other
thread or by an external event.

3. A method does not copy its incoming

arguments into state variables that
would possibly persist beyond execu-
tion of the method itself.

4. The objects referenced from certain
incoming arguments to a method are
known to reside in a scope that enclos-
es (surrounds) the scopes containing
objects referenced from certain other
arguments.
All of these properties are important

attributes of real-time software systems.
Property 1 is important when a program-
mer wants to know if it is appropriate to
invoke a particular method from a con-
text, such as a hardware interrupt handler
or a hard real-time task that requires a reli-
able upper bound on the amount of CPU
time and memory required to execute the
method. Property 2 must be verified for
methods that are invoked while holding
certain kinds of priority ceiling locks.
When temporary objects are passed as
arguments to a method, property 3 estab-
lishes an assurance that a dangling pointer
will not result as a side effect of the oper-
ations performed within the invoked
method. Finally, the knowledge represent-
ed by property 4 makes it possible for a
method to safely establish pointers from
certain temporary objects (the ones that
are known to have shorter lifetimes) to
certain other temporary objects (those
known to have longer lifetimes).

Safety-Critical Type
Declarations
The safety-critical type system uses the
meta-data annotation system introduced
with Java 5.0 to associate safety-critical
properties with specific software compo-
nents1. Programmers use the type system
of standard edition Java to specify, for
example, that a particular method’s argu-
ment is of HighResolutionTime. Using
annotations to augment the standard edi-
tion type system, safety-critical Java devel-
opers use the safety-critical type system’s
@Scoped annotation to clarify, for exam-

Enforcing Static Program Properties in
Safety-Critical Java Software Components

Using the Java language for the development of safety-critical code requires even more enforcement of static properties than is
enforced by the traditional Java platform. This article examines style guidelines and describes development tools that enforce
the guidelines in order to enable cost-effective certification of Java application code to DO-178B Level A and similar safety
certification standards. These approaches eliminate the need for garbage collection, support safe and efficient modular compo-
sition of independently developed software components, and enable automatic analysis of an application’s worst-case memory
and CPU-time requirements.

Dr. Kelvin Nilsen
Aonix

February 2009 www.stsc.hill.af.mil 25

ple, that the argument may have been allo-
cated in stack memory. The following
method declaration illustrates this usage:

void setDeadline(@Scoped
HighResolutionTime newDeadline);

The remainder of this section describes
some of the annotations that are available
to safety-critical developers using the safe-
ty-critical type system.

Resource Limitations
To indicate that a particular method must
be implemented using a subset of the full
Java language—that can be automatically
analyzed by development tools to deter-
mine the worst-case CPU time and stack
memory requirements—its declaration is
accompanied by a @StaticAnalyzable
annotation, as in the following code:

@StaticAnalyzable
void handleAsyncEvent() {

// method body
}

The safety-critical Java type system
enforces that all overriding methods also
be @StaticAnalyzable. Furthermore, the
type system enforces that any methods
invoked from within a @StaticAnalyzable
method are also declared @StaticAnalyz-
able, and it requires that the programmer

provide special assertions to limit iteration
counts and recursion depths, and to
bound the sizes of any arrays or strings
allocated within the method.

Non-Blocking Behavior
A special form of the @StaticAnalyzable
annotation allows developers to state a
requirement that the implementation of a
particular method does not perform any
blocking operations. Java annotations have
associated attributes, with default values
for each attribute. One of the attributes of
@StaticAnalyzable is named enforce_
non_blocking. Its default value is true. To
specify that blocking is allowed, develop-
ers can override the default value, as in the
following method declaration:

@StaticAnalyzable(enforce_non_blocking
= {false})
void waitForInput();

When declared (as shown), the stack
memory usage and the total CPU time con-
sumed by this method are bounded.
However, since the method may block wait-
ing for input, analysis of how long the
method will execute depends on understand-
ing when the input will become available.

Captive-Scoped Arguments
Certain incoming method arguments may
be declared as @CaptiveScoped, meaning

that the method promises to hold copies
of those argument values only within its
local variables or passed to other methods
as @CaptiveScoped arguments. @Captive
Scoped arguments can never be copied to
instance or static fields. Thus, the invoker
of a method knows that it can safely
reclaim the memory associated with tem-
porary objects, which are passed as
@CaptiveScoped arguments as soon as
the invoked method returns. The follow-
ing declaration demonstrates use of the
@CaptiveScoped annotation:

@CaptiveScopedThis void
reserve(@CaptiveScoped SizeEstimator
sizeIncrement);

Nesting Relationships of
Stack-Allocated Arguments
In certain situations, the safety-critical Java
type system understands that incoming
temporary arguments have certain relative
lifespan orderings. For example, the
@Scoped arguments to an instance method
of a reentrant-scope object are known to
have a lifetime that is at least as long as the
reentrant scope object itself. The safety-
critical Java system organizes memory as a
hierarchy of scopes. If one object is known
to live as long as another, we say the first
encloses the second. This terminology derives
from the hierarchy of scopes within which
the two objects reside. Outer-nested scopes

Characteristic Type System Static Analyzer
Identification of
Static Properties

The programmer inserts
declarations to identify intent
and the type system verifies
that the code is consistent with
the declared intent.

The static analyzer infers the intent from context and usage. The static
analyzer may infer different intentions for the same code when used in
different contexts. The static properties that will be inferred by the static
analyzer are not easily recognized by the human review of source code.

Enforcement By refusing to translate
programs that contain type
system errors, the compiler
enforces the type system.

Programmers may decide not to run the static analyzer or may ignore its
recommendations.

Precision The programming language
specification must precisely
characterize exactly what
constitutes a legal program.

The characterization of what will be understood by a static analyzer is much
less precise. One vendor’s static analyzer may reach very different
conclusions than another’s. Static analyzers may produce false negatives,
stating that certain lines of code may violate desired properties even though
an intelligent human analysis would prove that the code does not represent a
problem. Static analyzers may produce false positives, concluding that a
desirable property holds true when really it does not. This typically occurs
when humans misconfigure the analysis in an attempt to reduce false
negatives.

Efficiency Because the compiler runs so
frequently, type systems
generally restrict themselves
to properties that are easily
and efficiently verified.

Whereas a compiler generally runs in seconds, a static analyzer often requires
hours. Rather than focusing attention on each method or class in isolation,
the typical static analyzer attempts to discover all of the contexts from which
each method might be invoked, and it propagates static information known
about each context into the execution of the method within that context.

Expressive
Power

To facilitate efficient
enforcement, the vocabulary
for speaking about types is
limited.

In theory, static analyzers can distinguish many more subtle nuances than a
type system and can treat particular program components as having different
properties when invoked from different contexts.

Table 1: Comparison of the Two Common Approaches to Static Property Verification

Enforcing Static Program Properties in Safety-Critical Java Software Components

Software Engineering Technology

26 CROSSTALK The Journal of Defense Software Engineering February 2009

enclose inner-nested scopes. The scopes are
organized as a stack, so objects residing in
outer-nested scopes live longer than objects
residing in inner-nested scopes. Consider
the following method declaration:

// Assume this method is associated with
// a @ReentrantScope class
@ScopedThis put(@Scoped Object
anObject);

At the invocation point of this
method, the safety-critical Java type sys-
tem enforces that the value assigned to the
incoming anObject argument encloses the
value assigned to the implicit this argu-
ment. Thus, within the implementation of
the put() method, it is safe to assign
anObject to a field of this. Since anObject
lives at least as long as this, no dangling
pointer will result when anObject’s memo-
ry is reclaimed.

Data-Flow Analysis
Data-flow analysis consists of analyzing
the flow of information within a software
module. Traditionally, type systems do not
perform data-flow analysis. Rather, data-
flow analysis is an advanced technique
performed by static analyzers that exam-
ine the flow of information throughout
the entire program, including flow
between methods. A unique characteristic
of the data-flow analysis performed by
the safety-critical type system is that it
restricts its attention to the Java byte code
one method at a time. This allows it to
operate more efficiently, and it establishes
a foundation upon which the results of
static analysis can be fully deterministic,
without false positives or false negatives,
and without ambiguity from one vendor’s
implementation to the next. The following
are the steps that comprise the data-flow
analysis performed during enforcement of
the safety-critical type system. Further
detail on data-flow analysis techniques is
available in reference [6].
1. The first step is to divide the method’s

code into independent basic blocks,
with directed edges representing the
possible control flows from one basic
block to the next. A basic block is a
sequence of instructions that is exe-
cuted sequentially, without branches
into or out of the code sequence.

2. For each basic block, identify the
attribute information that is intro-
duced by execution of that block (the
gen-set) and the attributes that are
superseded by execution of that block
(the kill-set). In many analyses, the gen-
sets and the kill-sets are described algo-
rithmically rather than with discrete

enumerations of elements.
3. Define the join functions for attribute

information.
a. For feed-forward attribute analysis,

the join function is applied every-
where multiple control paths enter
a given basic block from predeces-
sor basic blocks.

b. For feed-backward attribute analy-
sis, the join function is applied
everywhere multiple control paths
leave a given basic block to the suc-
cessor basic blocks.

4. For feed-forward attribute analysis,
identify the initial set of attribute
information based on safety-critical
Java type annotations associated with
the method’s declaration.

5. For feed-backward attribute analysis,

identify the initial set of attribute
information based on safety-critical
Java type annotations associated with
the method’s declaration.

6. Repeat until the inner loop executes
without any further changes to previ-
ously computed attribute information.
For each basic block in the method:
a. For feed-forward attributes, com-

pute the block’s attribute informa-
tion by joining the attribute infor-
mation available from all predeces-
sor blocks, removing the attribute
information that is superseded by
this block’s kill-set, and adding the
attribute information represented
by this block’s gen-set.

b. For feed-backward attributes, com-
pute the block’s attribute informa-
tion by merging the attribute infor-
mation available from all successor

basic blocks, removing the attri-
bute information that is super-
seded by this block’s kill-set, and
adding the attribute information
represented by this block’s gen-set.

c. For convenience in discussing exe-
cution of this algorithm, we speak
of each basic block’s in-set and out-
set. The in-set represents the join of
information flows into this basic
block. The out-set represents the
result of applying this block’s gen-set
and kill-set information to the in-set
information. For feed-forward at-
tribute analysis, the in-set informa-
tion is associated with the start of
the block and the out-set informa-
tion is associated with the end of
the block. For feed-backward
attribute analysis, the in-set infor-
mation is associated with the end
of the block and the out-set infor-
mation is associated with the
beginning of the block.

Data-flow analysis problems guarantee
termination by operating on a finite uni-
verse of possible attribute values. Thus,
there is a maximum size for each in-set and
out-set. Each iteration of the algorithm
either leaves the in-set and out-set sizes
unchanged, or at least one set expands. If
the set sizes are unchanged, the algorithm
has terminated.

Example Analysis of a
Feed-Backward Attribute
Because of limitations built into the stan-
dard edition Java annotation system, it is
not possible for developers to annotate
their local variables. Thus, the safety-criti-
cal Java type system infers type informa-
tion by examining how the variables are
used within the method. If a local vari-
able’s value is ever assigned to a field vari-
able or passed as an argument to a formal
parameter that is declared @Captive
Scoped, then the local variable must be
treated as a captive-scoped variable. This sit-
uation is recognized by feed-backward
analysis of data-flow, as illustrated by the
following example.

Assume the following external method
declarations:

// Within class java.lang.Object
@CallerAllocatedResult
@CaptiveScopedThis String toString();

// Within the same class as the following
// method
@Scoped static Object staticField;
static void print(@CaptiveScoped String
arg);

“A unique
characteristic of the
data-flow analysis
performed by the

safety-critical type system
is that it restricts its
attention to the Java

byte code one method
at a time.This allows

it to operate
more efficiently ...”

Enforcing Static Program Properties in Safety-Critical Java Software Components

February 2009 www.stsc.hill.af.mil 27

Now, consider analysis of the following
method:
[1] @Scoped static Object staticField;
[2] static void method() {
[3] Object anObject = new Object();
[4] print(anObject.toString());
[5] staticField = anObject;
[6] }

This method allocates an Object,
invokes the toString() method on this
Object, printing the resulting String, and
then assigning the value of anObject to
the staticField variable. I will describe the
analysis that allows the compiler to deter-
mine that the String returned from the
Object.toString() method invocation on
line 4 is allocated in this method’s local
scope and discarded upon return from the
method. The same analysis detects that
the Object allocated at line 3 must be allo-
cated within the corresponding Class-
Loader scope because the assignment on
line 5 makes this Object reachable from
the class variable named staticField.

The first step is to divide this method
into basic blocks, computing the kill-set
and gen-set for each. The results of this
step are represented in Figure 1.

Based on the information available in
block B1, it appears that anObject is cap-
tive-scoped. This is because we invoke the
toString() method on anObject, and this
method is declared @CaptiveScopedThis.
Based on the information available within
block B2, it appears that the synthesized
temp variable is captive-scoped. Note that the
print() method expects a single captive-scoped
String argument. In block B3, we discover
that anObject must be a scoped variable
because it is assigned to staticField, which
is declared @Scoped. The safety-critical
type system treats captive-scoped as a special-
ization of scoped. If a given variable is
treated in different contexts as both cap-
tive-scoped and scoped, it concludes that the
variable must be scoped. This is similar to
the notion of widening in traditional type
systems, which allow a single-precision
floating point value to be assigned to a
double-precision floating point value, but
would not allow a double-precision float-
ing point value to be assigned to a single-
precision variable without an explicit type
coercion. For this reason, the kill-set for
B3 removes the captive-scoped association
for anObject.

For this attribute analysis, the join func-
tion represents the most conservative clas-
sification indicated by all subsequent uses
of the variable. This same join behavior is
applied when propagating usage informa-
tion through a basic block. If one future
usage indicates a variable is scoped when

another indicates that it is captive-scoped, we
treat the variable as scoped because that is
the more conservative treatment. If any
future usage indicates that a variable is not
scoped, then we must treat the variable as
unscoped even if certain other future usages
treat the variable as scoped or captive-scoped.
The unscoped attribute is the most conserv-
ative. A variable with the unscoped attribute
is only allowed to reference immortal
objects, which are allocated in the heap
rather than stack memory. The RTSJ iden-
tifies such objects as immortal because
there is no garbage collection and no com-
mand to reclaim the memory for an object
previously allocated within the heap.

There is no specific scoping informa-
tion represented by the annotations asso-
ciated with this method’s return result.
Assume that we process the basic blocks
in ascending numeric order. Remember
that since we are performing a feed-back-
ward analysis, the in-set is associated with
the end of each block, and the out-set is
associated with the start. After the first

iteration through the basic blocks, we have
the following information:

B0:in-set = { }
out-set = { }

B1:in-set = { }
out-set = { anObject is captive-scoped }

B2:in-set = { }
out-set = { temp is captive-scoped }

B3:in-set = { }
out-set = { anObject is scoped }

Propagating all of the available data-
flow information to all basic blocks
requires several additional iterations. After
the second iteration, the data-flow associ-
ated with each block is the following:

B0:in-set = { anObject is captive-scoped }
out-set = { anObject is captive-scoped }

B1:in-set = { temp is captive-scoped }

B0: anObject = new Object();

gen-set = { }
kill-set = { }

B1: temp = anObject.toString();

gen-set = { anObject is captive-scoped }
kill-set = { }

B2: print(temp);

gen-set = { temp is captive-scoped }
kill-set = { }

B3: staticField = anObject;

gen-set = { anObject is scoped }
kill-set = { any knowledge that anObject is captive-scoped }

B0: collection = new HashMap();

gen-set = { aStuff encloses collection }
kill-set = { }

B1: if (flag) goto B2, else goto B3;

gen-set = { }
kill-set = { }

B3: anObject = aStuff;B2: anObject = aStuff.field;

Figure 1: Basic Blocks Related By Control-Flow Edges

out-set = { anObject is captive-scoped,
temp is captive-scoped }

B2:in-set = { anObject is scoped }
out-set = { temp is captive-scoped,

anObject is scoped }

B3:in-set = { }
out-set = { anObject is scoped }

After the third iteration, we have:

B0:in-set = { anObject is captive-scoped,
temp is captive-scoped }

out-set = { anObject is captive-scoped,
temp is captive-scoped }

B1:in-set = { anObject is scoped, temp is
captive-scoped }

out-set = { anObject is scoped, temp is
captive-scoped }

B2:in-set = { anObject is scoped }
out-set = { temp is captive-scoped,

anObject is scoped }

B3:in-set = { }
out-set = { anObject is scoped }

We need one more iteration to reach a
fixed point. After, the fourth iteration, we
discover the following:

B0:in-set = { anObject is scoped, temp is
captive-scoped }

out-set = { anObject is scoped, temp is
captive-scoped }

B1:in-set = { anObject is scoped, temp is
captive-scoped }

out-set = { anObject is scoped, temp is
captive-scoped }

B2:in-set = { anObject is scoped }
out-set = { temp is captive-scoped,

anObject is scoped }

B3:in-set = { }
out-set = { anObject is scoped }

If we were to iterate one more time
through the basic blocks, there would be
no further changes to our calculations of
in-sets and out-sets. Thus, the data-flow
analysis is done.

The safety-critical type system uses this
information to determine that the captive-

scoped temp String created implicitly at line 4
can be allocated in this method’s local stack
frame memory. Likewise, it determines that
the scoped Object created at line 3 must be
allocated in this class’ ClassLoader scope
because it must be referenced from one of
the class’s static variables.

Example Analysis of a
Feed-Forward Attribute
The question of whether one object
resides in a scope that is nested external to
the scope that holds another object is
answered by a feed-forward analysis of
data flow. We use the term encloses to
describe this notion. For purposes of
illustration, assume that the feed-back-
ward analysis has already determined that
the new HashMap object allocated at line
3 is to be allocated in this method’s local
stack frame memory. That knowledge
becomes an input to the analysis described
in the following program fragment:

[1] static void buildCollection(Boolean
Flag, @Scoped Stuff aStuff) {

[2] Object anObject;
[3] HashSet collection = new

HashMap();
[4] if (flag)
[5] an Object = aStuff.field;
[6] else
[7] an Object = aStuff;
[8] collection.add(anObject);
[9] }

In this code, the new HashSet object
created at line 3 is allocated in this
method’s local stack frame. Depending on
the value of the incoming flag argument,
we insert into the HashSet either a refer-
ence to the object named by the aStuff
argument, or the object named by the
field variable associated with the aStuff
argument. The Stuff declaration (not
shown) defines an instance field named
field of type @Scoped Object. The
HashSet class is declared with the
@ReentrantScope annotation, and its
add() method declares its single argument
to be @Scoped. Given these declarations,
the safety-critical Java compiler is required
to prove that the argument to the
HashSet.add() method resides in a scope
that encloses the scope of the HashSet
object itself. This is required because the
add() method is going to create a refer-
ence from the HashSet object to the
Object that is inserted into the set. The
remainder of this section describes the
analysis performed by the compiler to
establish this relationship.

The first step is to divide this method

Software Engineering Technology

28 CROSSTALK The Journal of Defense Software Engineering February 2009

B1: temp = anObject.toString();

gen-set = { anObject is captive-scoped }
kill-set = { }

B2: print(temp);

gen-set = { temp is captive-scoped }
kill-set = { }

B3: staticField = anObject;

gen-set = { anObject is scoped }
kill-set = { any knowledge that anObject is captive-scoped }

B0: collection = new HashMap();

gen-set = { aStuff encloses collection }
kill-set = { }

B1: if (flag) goto B2, else goto B3;

gen-set = { }
kill-set = { }

B3: anObject = aStuff;

gen-set = { anObject encloses aStuff }
kill-set = { }

B2: anObject = aStuff.field;

gen-set = { anObject encloses aStuff }
kill-set = { }

B4: collection.put(anObject);

gen-set = { }
kill-set = { }

Figure 2: Basic Blocks Related By Control-Flow Edges

Enforcing Static Program Properties in Safety-Critical Java Software Components

February 2009 www.stsc.hill.af.mil 29

into basic blocks, computing the kill-set
and gen-set for each. The output of this
step is represented in Figure 2.

Note that block B1 generates the
knowledge that aStuff encloses collection.
This is because any incoming scoped argu-
ments necessarily reside in scopes that sur-
round all locally allocated objects. Also
note that block B2 generates the knowl-
edge that anObject encloses aStuff. This is
because any field fetched from an object
must necessarily reside in a scope that is
visible from the object (i.e., that encloses
the object). Otherwise, the code that orig-
inally assigned the field would have been
disallowed. Similarly, block B3 generates
the same knowledge because, by defini-
tion, every scope encloses itself.

For this analysis, the join function com-
puted for node N is the intersection of all
out-sets associated with the predecessors of
node N. In other words, the only informa-
tion we know about the enclosure rela-
tionships between objects is information
known on all incoming paths. If the infor-
mation is only known upon exit from one
of several predecessors to this block, the
information may be true—but is not nec-
essarily true upon entry to this particular
basic block.

There is no specific object relationship
information represented by the annota-
tions associated with this method’s incom-
ing arguments; consequently, the in-set for
block B0 is empty. Assume that we
process the basic blocks in ascending
numeric order. After the first iteration
through the basic blocks, we have the fol-
lowing information:

B0: in-set = { }
out-set = { aStuff encloses collection }

B1:in-set = { aStuff encloses collection }
out-set = { aStuff encloses collection }

B2:in-set = { aStuff encloses collection }
out-set = { aStuff encloses collection,

anObject encloses aStuff }

B3:in-set = { aStuff encloses collection }
out-set = { aStuff encloses collection,

anObject encloses aStuff }

B4:in-set = { aStuff encloses collection,
anObject encloses aStuff }

out-set = { aStuff encloses collection,
anObject encloses aStuff }

If we iterate one more time through the
basic blocks, there will be no further
changes to our calculations of in-sets and
out-sets. Thus, the data-flow analysis is done.

Block B4 consists of the statement

collection.put(anObject). The annotated
API description for HashMap.put(), which
is not shown, requires for every invocation
that the argument to put() enclose the
HashMap object that is the target of the
put() invocation. The type system applies
the transitive property on the relationships
available within the in-set for block B4,
thereby validating that the requirement for
relative nesting of incoming arguments is
satisfied. In other words, the safety-critical
type system has proven that the invocation
of HashMap.put() at line 8 is a legal invo-
cation.

Conclusion
Standard edition Java provides the infra-
structure that is required to augment the
type system to speak of static properties
that are relevant to safety-critical develop-
ment. The augmented type system can be
implemented by tools that run in combi-
nation with standard edition Java develop-
ment tools by analyzing byte code. The
benefits of this approach include leverag-
ing mainstream economies of scale for
much of the software and expertise asso-
ciated with safety-critical development,
exploiting the improved programming
language features of Java in comparison
with legacy languages like Ada, C, and
C++, and providing an enhanced type sys-
tem that focuses on properties of concern
to safety-critical developers. All of this
translates to reduced costs, improved
longevity, and increased functionality for
safety-critical software.u

References
1. RTCA/DO-178B. “Software Consid-

erations in Airborne Systems and
Equipment Certification.” 1 Dec.,
1992.

2. Besnard, J., et al., Eds. Developing
Software for Safety Critical Systems.
Institute of Electrical and Electronics
Engineers, July 1998.

3. Gosling, James, et al. The Java Lan-
guage Specification. 3rd ed. Prentice
Hall PTR, June 2005.

4. JSR-302: Safety-Critical Java Technol-
ogy. Java Community Process <http://
jcp.org/en/jsr/detail?id=302>.

5. Bollella, Gregory, et al. The Real-Time
Specification for Java. Addison-Wesley
Longman, 2000.

6. Aho, Alfred V., et al. Compilers:
Principles, Techniques, and Tools. 2nd
ed. Addison Wesley, Oct. 2007.

7. Nilsen, Kelvin. A Type System to
Assure Scope Safety Within Safety-
Critical Java Modules. Proc. of the 4th
Annual Workshop on Java Technolo-
gies for Real-Time and Embedded

Systems, ACM. Paris, France: 11-13
Oct. 2006.

8. The PERC Pico User Manual. Aonix.
19 Apr. 2008 <http://research.aonix.
com/jsc/pico-manual.4-19-08. pdf>.

Note
1. The JSR-302 expert group of the Java

Community Process is developing a
specification for safety-critical devel-
opment with the Java language. The
team of experts, including the author
of this article, has identified a number
of static properties that should be
assured for any Java software deployed
in safety-critical systems, but has cho-
sen not to standardize the mechanisms
by which these properties are assured.
This article describes the annotation
system implemented for this purpose
in a commercial product offered by the
author’s company [7, 8]. Because of
space limitations, this article provides
only an overview of the complete
annotation system.

About the Author

Kelvin Nilsen, Ph.D., is
the chief technology
officer of Aonix, an
international supplier of
mission- and safety-criti-
cal software solutions.

Nilsen oversees the design and imple-
mentation of the PERC real-time Java
virtual machine along with other Aonix
products, including ObjectAda compil-
ers, development environment, libraries,
and commercial off-the-shelf safety cer-
tification support. Nilsen’s seminal
research on the topic of real-time Java
led to the founding of NewMonics (sub-
sequently purchased by Aonix in 2003), a
leader in advanced real-time virtual
machine technologies to support real-
time execution of Java programs. Nilsen
has a bachelor’s degree in physics from
Brigham Young University as well as
master’s and doctorate degrees in com-
puter science from the University of
Arizona.

Aonix
5930 Cornerstone Court West
STE 250
San Diego, CA 92121
Phone: (801) 756-4821
Fax: (801) 756-4839
E-mail: kelvin@aonix.com

